8,785 research outputs found

    Transient Optical Characterisation of Donor-Acceptor Block Copolymers for Use in Solar Cells

    Get PDF
    This thesis presents a study of photo-active, semiconducting block copolymers for use in molecular solar cells. Current state-of-the-art organic devices utilise blends of two (or more) materials that are co-deposited from a common solution; the resulting structures formed are determined by material properties and deposition conditions, but often result in configurations that are detrimental to device performance. An answer to this problem comes in the form of the block copolymer; using these materials, devices can be formed from a single material active layer. In addition, the counterbalance of forces within films of block copolymer can lead to nano-scale self-assembly that allows for a strong degree of control over layer equilibrium morphology. Such control will be an important step forward in the evolution of molecular solar cells. The main body of this work is concerned with the study of the photo-physics of photo-conductive block copolymers, especially the generation of free charge. First, an investigation is made into the inherent structure-function relationship in block copolymers. A varying chain length is seen to drastically affect the photoluminescence quenching and yield of long-lived charges. Photovoltaic devices made using these materials show a peak efficiency of 0.11% and correlate with the spectroscopic results, subject to a trade off between charge generation and transport/collection. In a second investigation, the effects of post-fabrication annealing on block copolymer films are considered; studies on annealed samples lead to the conclusion that domain crystallinity is a significant factor in determining the yields of long-lived charge carriers. It is found that these yields are comparable with those of a standard blend (that achieve 75% photon to electron conversion efficiency). Annealing leads to increases in photovoltaic device performance over unannealed samples, although additional control over active layer morphology is necessary for these materials to attain their potential. Following this, a comparative study is made between a block copolymer and a similarly composed blend formed from well studied polyfluorene copolymers. Further advantages of block copolymers are highlighted, including the stability of morphologies generated under different deposition conditions. Finally, a novel tool set is introduced using a block copolymer sample to emphasise the experiments potential with regard to studying interfacial photophysical effects

    An introduction to statistical parametric speech synthesis

    Get PDF

    How to make a triangulation of S^3 polytopal

    Full text link
    We introduce a numerical isomorphism invariant p(T) for any triangulation T of S^3. Although its definition is purely topological (inspired by the bridge number of knots), p(T) reflects the geometric properties of T. Specifically, if T is polytopal or shellable then p(T) is `small' in the sense that we obtain a linear upper bound for p(T) in the number n=n(T) of tetrahedra of T. Conversely, if p(T) is `small' then T is `almost' polytopal, since we show how to transform T into a polytopal triangulation by O((p(T))^2) local subdivisions. The minimal number of local subdivisions needed to transform T into a polytopal triangulation is at least p(T)3nn2\frac{p(T)}{3n}-n-2. Using our previous results [math.GT/0007032], we obtain a general upper bound for p(T) exponential in n^2. We prove here by explicit constructions that there is no general subexponential upper bound for p(T) in n. Thus, we obtain triangulations that are `very far' from being polytopal. Our results yield a recognition algorithm for S^3 that is conceptually simpler, though somewhat slower, as the famous Rubinstein-Thompson algorithm.Comment: 24 pages, 17 figures. Final versio

    Complexity of triangulations of the projective space

    Full text link
    It is known that any two triangulations of a compact 3-manifold are related by finite sequences of certain local transformations. We prove here an upper bound for the length of a shortest transformation sequence relating any two triangulations of the 3-dimensional projective space, in terms of the number of tetrahedra.Comment: 10 pages, 3 figures. Revised version, to appear in Top. App

    Investigating the shortcomings of HMM synthesis

    Get PDF
    This paper presents the beginnings of a framework for formal testing of the causes of the current limited quality of HMM (Hidden Markov Model) speech synthesis. This framework separates each of the effects of modelling to observe their independent effects on vocoded speech parameters in order to address the issues that are restricting the progression to highly intelligible and natural-sounding speech synthesis. The simulated HMM synthesis conditions are performed on spectral speech parameters and tested via a pairwise listening test, asking listeners to perform a “same or different ” judgement on the quality of the synthesised speech produced between these conditions. These responses are then processed using multidimensional scaling to identify the qualities in modelled speech that listeners are attending to and thus forms the basis of why they are distinguishable from natural speech. The future improvements to be made to the framework will finally be discussed which include the extension to more of the parameters modelled during speech synthesis
    corecore